2022年3月和4月,两份重磅文件——《“十四五"现代能源体系规划》和《“十四五"能源领域科技创新规划》相继发布。作为可再生能源产业发展的顶层规划文件,政策在数字化发展领域给出了明确的发展目标。
《“十四五"现代能源体系规划》提出,提升能源产业链现代化水平,加快能源产业数字化智能化升级,加强利用新一代ICT技术、AI、云计算、区块链、物联网、大数据等技术;建设智慧能源平台和数据中心和智慧能源示范工程,在风光发电领域加快“智慧风电"、“智慧光伏"建设,推进电站数字化与无人管理。并特别罗列“智慧风电"所包含内容,如智能化运维、故障预警、精细化控制、场群控制等。
《“十四五"能源领域科技创新规划》进一步指出了能源数字化、智能化技术的重点任务。包含“智能传感与智能量测"、“特种智能机器人"、“能源装备数字孪生"、“人工智能与区块链"、“能源大数据与云计算"、“能源物联网"在内的基础共性技术;以及包含“风电机组与风电场数字化智能化技术"在内的行业智能升级技术。为风电数字化发展提供了明确的指引和目标方向。
一、简介(LYWHX-9800同步卫星无线高压核相仪耐用,质量可靠)
LYWHX-9800无线高压卫星授时远程核相仪又名无线高压卫星授时远程核相器,由X接收器、Y接收器、X探测器、Y探测器、伸缩绝缘杆等组成,同时具有普d通核相仪的功能。卫星授时核相能实现超远距离核相、地下室核相、矿井下核相,授时精度小于30nS。接收器采用3.5寸真彩液晶屏,内置六合一多模卫星授时模块,支持多种卫星导航系统,包括中国的 BDS(北斗卫星导航系统),美国的GPS,俄罗斯的GLONASS,欧盟的GALILEO,日本的QZSS以及卫星增强系统SBAS(WAAS,EGNOS,GAGAN,MSAS),包含32个跟踪通道,可以同时接收六种卫星授时系统的GNSS信号,并且实现联合授时,确保核相。接收器同屏显示实时相位、频率,具有“X信号正常、Y信号正常、同相、异相"等语音提示,清晰直观。空旷地面普通核相距离可达1600m,卫星授时核相距离大于500km,能对10V~550kV的电压线路全智能核相,也可用于高压线路和*密封的环网柜低压感应点核相,其中35kV及以下的裸导线探测器可以直接接触核相,35kV以上的裸导线采用非接触式核相,非接触核相是将探测器逐渐靠近被测导线,当感应到电场信号时就可以完成核相,这样无需直接接触高压导线,更加安全!本核相仪还同时具有高压验电器、高压相位表、高压相序表的功能,可以用于验电、相序测试,变压器组别判断等。
二、技术规格(LYWHX-9800同步卫星无线高压核相仪耐用,质量可靠)
功 能 | 无线高压卫星授时语音核相,频率、相位、相序、验电测试 |
电 源 | DC 3.7V可充锂电池,USB充电接口,连续工作约10小时 |
核相模式 | 卫星秒脉冲模式、卫星授时模式、普通模式 |
传输方式 | 315MHz、433MHz无线传输 |
核相距离 | 普通核相模式距离1600m |
卫星授时模式距离不受限制,达500km以上 | |
显示模式 | 3.5寸真彩液晶屏显示 |
量 程 | 核相电压等级:AC 10V~550kV |
相位:0°~360° | |
频率:45Hz~75Hz | |
分 辨 力 | 1°;0.1Hz |
精 度 (23℃±5℃,80%RH以下) | 卫星授时核相:≤±5° |
普通核相:≤±10° | |
频率:≤±2Hz | |
相别定性 | XY两接收器显示的实时相角差在0°~30°为同相; XY两接收器实时相角差在90°~120°或210°~270°为异相 |
语音功能 | 同相、异相、X信号正常、Y信号正常等语音功能 |
绝缘杆尺寸 | 拉伸后长约5m;收缩后长约1m(5节) |
持续核相时间 | 卫星授时成功后,若无卫星信号可持续核相30分钟,满足地下室、矿井下核相 |
核相方式 | 接触核相:35kV及以下裸导线,或110kV以下有安全绝缘外皮的导线直接接触核相。(带绝缘杆操作) |
非触核相:35kV以上裸导线,或110kV以上线路采用非接触核相。(带绝缘杆操作) | |
验电指示 | 探测器“嘟--嘟--嘟"蜂鸣声 |
换 档 | 自动换档 |
采样速率 | 2次/秒 |
搜星时间 | 第1次开机搜星时间约3分钟,开机后第2次搜星时间约30秒,后续热启动约1秒,搜索卫星时主机正面水平朝天 |
授时精度 | 小于30nS |
仪表尺寸 | 探测器:长宽厚145mm×60mm×48mm |
接收器:长宽厚250mm×100mm×40mm | |
背光控制 | 按上下箭头键调整背光亮度 |
感应强度控制 | 根据感应的电场强不同,探测器能自动控制放大倍数,便于排线密集场所核相 |
数据保持 | 测试模式下按HOLD键保持数据,再按HOLD键取消保持 |
退出功能 | 按ESC键退出当前功能界面,返回上级目录 |
数据查阅 | 按ENTER进入数据查阅模式后,按箭头键翻阅所存数据 |
搜星指示 | 搜索卫星时动态显示“----"符号 |
自动关机 | 开机约15分钟后,仪表自动关机,以降低电池消耗 |
电池电压 | 当电池电压低于3.2V时 |
探测器:电源指示灯慢闪,提醒充电 | |
接收端:电池电压低符号显示,提醒充电 | |
额定电流 | 探测器:35mA max;接收器:300mA max |
仪表质量 | 探测器:205g(含电池) |
接收器:395g(含电池) | |
绝缘杆:1.45kg | |
总质量:9.8kg(含仪表箱) | |
工作温湿度 | -10℃~40℃;80%Rh以下 |
存放温湿度 | -10℃~60℃;70%Rh以下 |
干 扰 | 无特强电磁场;无433MHz、315MHz同频干扰 |
绝缘强度 | 绝缘杆:AC 110kV/rms(5节绝缘杆全部拉伸后,两端之间) |
探测器:2000V/rms(绝缘杆连接头与钩式检测仪顶端之间) | |
接收器:2000V/rms(外壳前后两端之前) | |
结 构 | 防滴漏Ⅱ型、IP63 |
适合安规 | GB13398-92、GB311.1-311.6-8、3DL408-91标准和国家新颁布电力行业标准《带电作业用1kV~35kV便携式核相器通用技术条件DL/T971-2005》要求 |
符合IEC61481-A2:2004;IEC 61243-1 ed.2:2003标准 |
三、结构(LYWHX-9800同步卫星无线高压核相仪耐用,质量可靠)
其实,在风电行业近十年的发展过程中,数字化从无到有,由点及面,几乎已经搭建了全产业链的智能化架构。
比如,在风电场前期建造环节,基于数字化手段的风电场选址已经成为项目首要采纳的方式。
在设备选型阶段,智慧风机也成为近年来业主采购的第1选机型。智慧风机综合利用计算、网络和物理设备等多种复杂系统和*传感技术、建模分析、控制方法以及协同决策,可实现设备稳定高效、电网友好的目标。
同时,根据《智能风机》中描述,在应对末来复杂的应用场景时,风电机组仅通过单机智慧和数字分析难以在更高的层级上实现效率和收益的很优秀,因此需要在更高层级进行协同决策。而协同决策则主要包含场站层级、场群层级、能源系统层级三个层级,从不同的层级实现机组与机组之间、场站与场站之间,以及与其他能源发电与储能之问实现相互协同与补充,实现能源互联网系统的高度协同与控制。
在长达20年的后运维环节中,基于气象数据与设备运行数据的功率预测、关键设备智能监测与故障诊断,均依托数字化基础打造了高效的信息处理能力和提前预警能力的风场后运维体系。
上述我们所提到的从测风到选址,再到设备运行和电力市场交易,国内主流整机企业已经依托多年的生产运营经验和数字化技术实现了风电全生命周期的数字化解决方案全覆盖,构建出一整套灵活的智慧风场体系,为风场稳定、高效生产提供了基础和保障。
上海来扬电气转载其他网站内容,出于传递更多信息而非盈利之目的,同时并不代表赞成其观点或证实其描述,内容仅供参考。版权归原作者所有,若有侵权,请联系我们删除。